Publications

Journal Papers:

  • C. Chen, Z. Wang, J. Wu, Z. Deng, T. Zhang, Z. Zhu, Y. Jin, B. Lew, I. Srivastava, Z. Liang, S. Nie, and V. Gruev, “Bioinspired, vertically stacked, and perovskite nanocrystal–enhanced cmos imaging
    sensors for resolving uv spectral signatures,” Science Advances, vol. 9, no. 44, eadk3860, 2023.
  • X. Bai, Z. Liang, Z. Zhu, A. Schwing, D. Forsyth, and V. Gruev, “Polarization-based underwater
    geolocalization with deep learning,” eLight, vol. 3, no. 1, p. 15, 2023.
  • I. Srivastava, B. Lew, Y. Wang, S. Blair, M. B. George, B. S. Hajek, S. Bangru, S. Pandit, Z. Wang,
    J. Ludwig, K. Flatt, M. Gruebele, S. Nie, and V. Gruev, “Cell-membrane coated nanoparticles for
    tumor delineation and qualitative estimation of cancer biomarkers at single wavelength exci-
    tation in murine and phantom models,” ACS Nano, vol. 17, no. 9, pp. 8465–8482, 2023.
  • X. Bai, Z. Zhu, A. Schwing, D. Forsyth, and V. Gruev, “Angle of polarization calibration for omni-
    directional polarization cameras,” Optics Express, vol. 31, no. 4, pp. 6759–6769, 2023.
  • P. Bou-Samra, N. Muhammad, A. Chang, R. Karsalia, F. Azari, G. Kennedy, W. Stummer, J. Tanyi,
    L. Martin, A. Vahrmeijer, B. Smith, E. Rosenthal, P. Wagner, D. Rice, A. Lee, A. Abdelhafeez, M. M.
    Malek, G. Kohanbash, W. B. Edwards, E. Henderson, J. Skjøth-Rasmussen, R. Orosco, S. Gibbs,
    R. W. Farnam, L. Shankar, B. Sumer, A. T. N. Kumar, L. Marcu, L. Li, V. Gruev, E. J. Delikatny,
    J. Y. K. Lee, and S. Singhal, “Intraoperative molecular imaging: 3rd biennial clinical trials up-
    date,” Journal of Biomedical Optics, vol. 28, no. 5, p. 050 901, 2023
  •  M. B. George, B. Lew, S. Blair, Z. Zhu, Z. Liang, I. Srivastava, A. Chang, H. Choi, K. Kim, S. Nie, S.
    Singhal, and V. Gruev, “Bioinspired color-near infrared endoscopic imaging system for molecular guided cancer surgery,” Journal of Biomedical Optics, vol. 28, no. 5, p. 056 002, 2023.
  • M. B. George, B. Lew, Z. Liang, S. Blair, Z. Zhu, N. Cui, J. Ludwig, M. Zayed, L. Selmic, and V.
    Gruev, “Fluorescence-guided surgical system using holographic display: From phantom studies
    to canine patients,” Journal of Biomedical Optics, vol. 28, no. 9, pp. 096 003–096 003, 2023.
  • L. E. Iannucci, M. B. Riak, E. Meitz, M. R. Bersi, V. Gruev, and S. P. Lake, “Effect of matrix properties
    on transmission and reflectance mode division-of-focal-plane stokes polarimetry,” Journal of
    Biomedical Optics, vol. 28, no. 10, pp. 102 902–102 902, 2023.
  • S. Blair, M. Garcia, Z. Zhu, Z. Liang, B. Lew, M. George, B. Kondov, S. Stojanoski, M. B. Todorovska,
    D. Miladinova, G. Kondov, and V. Gruev, “Decoupling channel count from field of view and spatial
    resolution in single-sensor imaging systems for fluorescence image-guided surgery,” Journal of
    Biomedical Optics, vol. 27, no. 9, p. 096 006, 2022.
  • S. Blair and V. Gruev, “Interpolant-based demosaicing routines for dual-mode visible/near-infrared
    imaging systems,” Optics Express, vol. 30, no. 19, pp. 34 201–34 217, 2022.
  • B. Kondov, S. Stojanovski, M. Bogdanova, V. Gruev, R. Cholancheski, L. Atanasova, and G. Kondov, “Factors predicting the likelihood of non-sentinel lymph node metastases in breast cancer
    patients with a positive sentinel lymph node: A single-center study,” Journal of Morphological
    Sciences, vol. 5, no. 1, pp. 85–92, 2022.
  • B. Lew, M. George, S. Blair, Z. Zhu, Z. Liang, J. Ludwig, C. Y. Kim, K. K. Kim, V. Gruev, and H. Choi,
    “Protease-activated indocyanine green nanoprobes for intraoperative nir fluorescence imaging
    of primary tumors,” Nanoscale Advances, vol. 4, no. 19, pp. 4041–4050, 2022.
  • I. Srivastava, R. Xue, J. Jones, H. Rhee, K. Flatt, V. Gruev, and S. Nie, “Biomimetic surface-enhanced raman scattering nanoparticles with improved dispersibility, signal brightness, and tumor targeting functions,” ACS Nano, vol. 16, no. 5, pp. 8051–8063, 2022.
  • Brady, M. Garcia, V. Gruev and M. Cummings, “In situ measurements of reef squid polarization patterns using two-dimensional polarization data mapped onto three-dimensional STL meshes, ” Journal of the Royal Society Interface, 2021.
  • Blair, M. Garcia, T. Davis, Z. Zhu, Z. Liang, C. Konopka, K. Kauffman, R. Colanceski, I. Ferati, B. Kondov, S. Stojanoski, M. B. Todorovska, N. T. Dimitrovska, N. Jakupi, D. Miladinova, G. Petrusevska, G. Kondov, W. L. Dobrucki, S. Nie, and V. Gruev, “Hexachromatic bioinspired camera for image-guided cancer surgery,” Science Translational Medicine, 13:eaaw7067, 2021.
  • Chen Y, Zhu Z, Liang Z, Iannucci LE, Lake SP, Gruev V. “Analysis of signal-to-noise ratio of angle of polarization and degree of polarization,” OSA Continuum, 15;4(5), 1461-72, 2021.
  • Kagal, M. Garcia, M. Cummings, V. Gruev and P. Brady, “Comparison of the polarization contrast of gelatinous zooplankton and a transparent single-use plastic bag—implications for marine animals, ” Marine Pollution Bulletin, 168(112438), 2021.
  • Temple, M. How, S. Powell, V. Gruev, N. Marshall, N. Roberts, “Thresholds of polarization vision in octopuses,” Journal of Experimental Biology, 224, 2021.
  • King, V. Gruev, S. Lake, “Implementation of a logarithmic division-of-focal-plane polarimeter to quantify changes in collagen alignment at varying levels of illumination,” Applied Optics, 59(26):7813-20, 2020.
  • Kondov, V. V. Gruev, S. Stojanovski, M. Bogdanovska-Todorovska, R. Colanceski, M. Srceva, A. Jovanovska, A. Stojkovski, G. Kondov. “Identification of Sentinel Lymph Node in Breast Cancer with three Tracers (Radiocolloid, Methylene blue, and Indocyanine Green).(Case Report),” Open Access Macedonian Journal of Medical Sciences, 10:94-8, 2020.
  • Marshall, S. Powell, T. Cronin, R. Caldwell, S. Johnsen, V. Gruev, T. Chiou, N. Roberts, and M. How, “Polarization Signals: A New Currency for Communication”, Journal of Experimental Biology, 2019.
  • Garcia, T. Davis, S. Blair, N. Cui, and V. Gruev, “Bioinspired polarization imager with high dynamic range,” Optica, vol. 5, 1240-1246, 2018.
  • Ahmed, X. Zhao, J. Chang, H. Ma, V. Gruev and A. Bermak, “Four-Directional Adaptive Residual Interpolation Technique for DoFP Polarimeters with Different Micro-polarizer Patterns,” IEEE Sensors Journal, vol. 18, no. 19, pp. 7990-7997, 1 Oct.1, 2018.
  • Garcia, C. Edmiston, T. York, R. Marinov, S. Mondal, N. Zhu, G. Sudlow, W. Akers, J. Margenthaler, S. Achilefu, R. Liang, M. Zayed, M. Pepino, and V. Gruev, “A Compact Bio-Inspired Imaging System Improves Sensitivity for Image-Guided Surgery,” Optica, vol. 5(4), 413-422, 2018.
  • Powell, R. Garnett, J. Marshall, C. Rizk and V. Gruev, “Bio-inspired Polarization Vision Enables Underwater Geolocalization,” Science Advances, vol. 4, 2018.
  • Cronin, M. Garcia and V. Gruev, “Multichannel spectrometers in animals,” Bioinspiration and Biomimetics, vol. 13(2), 2018.
  • Hall, V. Gruev, and R. Chamberlain, “Characterization of a Binary Output Resistance-to-Voltage Read Circuit for Sensing Magnetic Tunnel Junctions,” IEEE Sensors Journal, vol. 18(3), 2018.
  • Garcia, C. Edmiston, R. Marinov, A. Vail, and V. Gruev, “Bio-inspired color-polarization imager for real-time in situ imaging,” Optica, vol. 4(10), pp. 1263-1271, 2017.
  • Marinov, N. Cui, M. Garcia, S. B. Powell and V. Gruev, “A 4-Megapixel Cooled CCD Division of Focal Plane Polarimeter for Celestial Imaging,” IEEE Sensors Journal, vol. 17 (9), pp. 2725-2733, 2017.
  • Garcia and V. Gruev, “Optical characterization of rigid endoscopes and polarization calibration methods,” Optics Express, vol. 24(14), pp. 15713-28, 2017.
  • Garcia, M. Zayed, K. Park, and V. Gruev, “Near-infrared angiography for critical limb ischemia in a diabetic murine model,” J. Biomed. Opt., vol. 22(4), pp. 046006, 2017.
  • Ahmed, X. Zhao, V. Gruev, J. Zhang, and A. Bermak, “Residual interpolation for division of focal plane polarization image sensors,” Optics Express, vol. 25, pp. 10651-10662, 2017.
  • B. Mondal, S. Gao, N. Zhu, L. Habimana-Griffin, W. J. Akers, R. Liang, V. Gruev, J. Margenthaler and S. Achilefu, “Optical See-Through Cancer Vision Goggles Enable Direct Patient Visualization and Real-Time Fluorescence-Guided Oncologic Surgery,” Annals of Surgical Oncology, vol. 24(7), pp. 1897-1903, 2017.
  • Marinov, N. Cui, M. Garcia, S. B. Powell, and V. Gruev, “A 4-Megapixel Cooled CCD Division of Focal Plane Polarimeter for Celestial Imaging,” IEEE Sensors Journal, vol. 17(9), pp. 2725-2733, 2017.
  • York, R. Marinov, and V. Gruev, “260 frames-per-second 648×488 resolution division-of-focal-plane polarimeter with structural dynamics and tracking applications,” Optics Express, vol. 24, pp. 8243-8252, 2016.
  • Johnsen, Y. L. Gagnon, N. J. Marshall, T. W. Cronin, V. Gruev, and S. Powell, “Polarization vision seldom increases the sighting distance of silvery fish,” Current Biology, vol. 26, pp. R752-R754, 2016.
  • M. Garcia, I. de Erausquin, C. Edmiston, and V. Gruev, “Surface normal reconstruction using circularly polarized light,” Optics Express, vol. 23, pp. 14391-14406, 2015.
  • Gao, S. B. Mondal, N. Zhu, R. Liang, S. Achilefu, and V. Gruev, “Image overlay solution based on threshold detection for a compact near infrared fluorescence goggle system,” Journal of Biomedical Optics, vol. 20, pp. 016018-016018, 2015.
  • B. Mondal, S. Gao, N. Zhu, G. P. Sudlow, K. Liang, A. Som, W. J. Akers, R. C. Fields, J. Margenthaler, R. Liang, V. Gruev and S. Achielfu. “Binocular Goggle Augmented Imaging and Navigation System provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Scientific Reports, vol. 5, 2015.
  • Zhu, C. Y. Huang, S. Mondal, S. Gao, C. Huang, V. Gruev, S. Achilefu, and R. Liang, “Compact wearable dual-mode imaging system for real-time fluorescence image-guided surgery,” Journal of Biomedical Optics, vol. 20, p. 096010, Sep 2015.
  • Chen, W. Jingang, A. Stern, G. Shengkui, V. Gruev, and B. Javidi, “Three-Dimensional Super Resolution Reconstruction by Integral Imaging,” Journal of Display Technology, vol. 11, pp. 947-952, 2015.
  • W. Skelley, R. M. Castile, T. E. York, V. Gruev, S. P. Lake, and R. H. Brophy, “Differences in the Microstructural Properties of the Anteromedial and Posterolateral Bundles of the Anterior Cruciate Ligament,” The American Journal of Sports Medicine, p. 0363546514566192, 2015.
  • Zhu, S. Mondal, S. Gao, S. Achilefua, V. Gruev, and R. Liang, “Dual-mode optical imaging system for fluorescence image-guided surgery,” Optics letters, vol. 39, pp. 3830-2, Jul 1 2014.
  • Zhu, S. Mondal, S. Gao, S. Achilefu, V. Gruev, and R. Liang, “Engineering light-emitting diode surgical light for near-infrared fluorescence image-guided surgical systems,” Journal of Biomedical Optics, vol. 19, p. 076018, 2014.
  • York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, S. P. Lake, B. Raman, and V. Gruev, “Bioinspired polarization imaging sensors: from circuits and optics to signal processing algorithms and biomedical applications,” Proceedings of the IEEE, vol. 102, pp. 1450-1469, 2014.
  • York, L. Kahan, S. P. Lake, and V. Gruev, “Real-time high-resolution measurement of collagen alignment in dynamically loaded soft tissue,” Journal of Biomedical Optics, vol. 19, pp. 066011-066011, 2014.
  • W. Roberts, M. J. How, M. L. Porter, S. E. Temple, R. L. Caldwell, S. B. Powell, V. Gruev, N. J. Marshall, and T. W. Cronin, “Animal Polarization Imaging and Implications for Optical Processing,” Proceedings of the IEEE, vol. 102, pp. 1427-1434, 2014.
  • Njuguna and V. Gruev, “Current-mode cmos imaging sensor with velocity saturation mode of operation and feedback mechanism,” IEEE Sensors Journal, vol. 14, pp. 710-721, 2014.
  • B. Mondal, S. Gao, N. Zhu, R. Liang, V. Gruev, and S. Achilefu, “Real-time fluorescence image-guided oncologic surgery,” Advances in cancer research, vol. 124, p. 171, 2014.
  • Gilboa, J. P. Cunningham, A. Nehorai, and V. Gruev, “Image interpolation and denoising for division of focal plane sensors using Gaussian processes,” Optics Express, vol. 22, pp. 15277-15291, 2014.
  • T. Charanya, T. York, K. Gullicksrud, G. Sudlow, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Polarization Imaging serves as a complimentary tool to NIR fluorescence guided colonoscopy,” in Biomedical Optics, 2014, p. BW1B. 3.
  • Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence-polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” Journal of Biomedical Optics, vol. 19, pp. 126002-126002, 2014.
  • M. Calabrese, P. C. Brady, V. Gruev, and M. E. Cummings, “Polarization signaling in swordtails alters female mate preference,” Proceedings of the National Academy of Sciences, vol. 111, pp. 13397-13402, 2014.
  • B. Powell and V. Gruev, “Calibration methods for division-of-focal-plane polarimeters,” Optics Express, vol. 21, pp. 21039-21055, 2013.
  • Liu, R. Njuguna, T. Matthews, W. J. Akers, G. P. Sudlow, S. Mondal, R. Tang, V. Gruev, and S. Achilefu, “Special Section on Fluorescence Molecular Imaging Honoring Prof. Roger Tsien, a Pioneer in Biomedical Optics: Near-infrared fluorescence goggle system with complementary metal–oxide–semiconductor imaging sensor and see-through display,” Journal of Biomedical Optics, vol. 18, 2013.
  • Liu, R. Njuguna, T. Matthews, W. J. Akers, G. P. Sudlow, S. Mondal, R. Tang, V. Gruev, and S. Achilefu, “Near-infrared fluorescence goggle system with complementary metal-oxide-semiconductor imaging sensor and see-through display,” Journal of Biomedical Optics, vol. 18, p. 101303, Oct 2013.
  • Gao and V. Gruev, “Gradient-based interpolation method for division-of-focal-plane polarimeters,” Optics Express, vol. 21, pp. 1137-1151, 2013.
  • S. Acharya, M. Actis, T. Aghajani, et al., “Introducing the CTA concept,” Astroparticle Physics, vol. 43, pp. 3-18, 2013.
  • York and V. Gruev, “Characterization of a visible spectrum division-of-focal-plane polarimeter,” Applied Optics, vol. 51, pp. 5392-5400, 2012.
  • Njuguna and V. Gruev, “Low power programmable current mode computational imaging sensor,” IEEE Sensors Journal, vol. 12, pp. 727-736, 2012.
  • Liu, T. York, W. Akers, G. Sudlow, V. Gruev, and S. Achilefu, “Complementary fluorescence-polarization microscopy using division-of-focal-plane polarization imaging sensor,” Journal of Biomedical Optics, vol. 17, pp. 116001-116001, 2012.
  • Kulkarni and V. Gruev, “Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters,” Optics Express, vol. 20, pp. 22997-23012, 2012.
  • Gruev, “Fabrication of a dual-layer aluminum nanowires polarization filter array,” Optics Express, vol. 19, pp. 24361-24369, 2011.
  • Gao and V. Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Optics Express, vol. 19, pp. 26161-26173, 2011.
  • Perkins and V. Gruev, “Signal-to-noise analysis of Stokes parameters in division of focal plane polarimeters,” Optics Express, vol. 18, pp. 25815-25824, 2010.
  • Gruev, Z. Yang, J. Van der Spiegel, and R. Etienne-Cummings, “Current mode image sensor with two transistors per pixel,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, pp. 1154-1165, 2010.
  • Gruev, J. Van der Spiegel, and N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Optics Express, vol. 18, pp. 19292-19303, 2010.
  • Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,”Optics Express, vol. 18, pp. 19087-19094, 2010.
  • Gruev, Z. Yang, and J. Van der Spiegel, “Low-power reduced transistor image sensor,” Electronics Letters, vol. 45, pp. 780-781, 2009.
  • M. Philipp, D. Orr, V. Gruev, J. Van der Spiegel, and R. Etienne-Cummings, “Linear current-mode active pixel sensor,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 2482-2491, 2007.
  • Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, and N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Optics Express, vol. 15, pp. 4994-5007, 2007.
  • Gruev and R. Etienne-Cummings, “A pipelined temporal difference imager,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 538-543, 2004.
  • Gruev and R. Etienne-Cummings, “Image Processing-Pipelined temporal difference imager,” Electronics Letters, vol. 38, pp. 315-316, 2002.
  • Gruev and R. Etienne-Cummings, “Pipelined temporal difference imager,” Electronics Letters, vol. 38, pp. 315-317, 2002.
  • Gruev and R. Etienne-Cummings, “Implementation of steerable spatiotemporal image filters on the focal plane,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 49, pp. 233-244, 2002.
  • Etienne-Cummings, V. Gruev, and M. Clapp, “High performance biomorphic image processing under tight space and power constraints,” Autonomous Robots 1, vol. 11a, pp. 227-232, 2001.
  • Gruev and R. Etienne-Cummings, “Programmable spatial processing imager chip,” Electronics Letters, vol. 37, pp. 688-690, 2001.

Conference Papers:

  • Gruev V, Haessig G, Joubert D, Haque J, Chen Y, Milde M, Delbruck T., “Division of focal plane asynchronous polarization imager. In Polarization: Measurement, Analysis, and Remote Sensing. SPIE, 2022.
  • Iannucci, V. Gruev, S. Lake. Comparison of transmission-and reflectance-mode quantitative polarized light imaging (QPLI) for microstructural analysis of collagenous soft tissues. In Polarized Light and Optical Angular Momentum for Biomedical Diagnostics SPIE, 2021.
  • Blair, S., Garcia, M., Davis, T., Colanceski, R., Ferati, I., Kondov, B., Stojanovski, S., Todorovska, M.B., Dimitrovska, N.T., Jakupi, N. and Miladinova, D., 2021, March. An 18-band snapshot hyperspectral imaging system for sentinel lymph node dissection with multiple near-infrared fluorophores. In Molecular-Guided Surgery: Molecules, Devices, and Applications VII(Vol. 11625, pp. 8-15). SPIE, 2021.
  • Blair S, Deliwala A, Chen E, Subashbabu S, Li A, George M, Garcia M, Cui N, Zhu Z, Andonovski S, Kondov B., Gruev V., A 3.47 e− Read Noise, 81 dB Dynamic Range Backside-Illuminated Multispectral Imager for Near-Infrared Fluorescence Image-Guided Surgery. In2020 IEEE International Symposium on Circuits and Systems (ISCAS) 2020.
  • Blair S, Cui N, Garcia M, Gruev V. A 120 dB Dynamic Range Logarithmic Multispectral Imager for Near-Infrared Fluorescence Image-Guided Surgery. In2020 IEEE International Symposium on Circuits and Systems (ISCAS) 2020.
  • Blair SM, Garcia M, Davis T, Colanceski R, Ferati I, Kondov B, Stojanovski S, Todorovska MB, Dimitrovska NT, Jakupi N, Miladinova D., Kondov G, Gruev v., “An 18-band snapshot hyperspectral imaging system for sentinel lymph node dissection with multiple near-infrared fluorophores.” InMolecular-Guided Surgery: Molecules, Devices, and Applications VII 2021 Mar 5 (Vol. 11625, p. 116250E). International Society for Optics and Photonics.
  • Ivanovich D, Zhao C, Zhang X, Chamberlain RD, Deliwala A, Gruev V. Chip-to-chip Optical Data Communications using Polarization Division Multiplexing. In2020 IEEE High Performance Extreme Computing Conference (HPEC) 2020 Sep 22 (pp. 1-8). IEEE.
  • PC Brady, M Garcia, T Hernandez, M Aalund, R Ellerd, V Gruev, ME Cummings, “A comparison of two distinct pelagic camouflage strategies in teleosts,” Integrative and Comparative Biology, 2020.
  • PC Brady, M Garcia, T Hernandez, M Aalund, R Ellerd, V Gruev, ME Cummings, “A comparison of two distinct pelagic camouflage strategies in teleosts,” Integrative and Comparative Biology, 2020.
  • Blair SM, Deliwala A, Chen E, Subashbabu S, Li A, George M, Garcia M, Cui N, Gruev V. “A backside-illuminated low-noise multispectral imager for near-infrared fluorescence image-guided surgery.” International Society for Optics and Photonics, Molecular-Guided Surgery: Molecules, Devices, and Applications, 2020.
  • Blair S, Garcia M, Davis T, Gruev V. “A Snapshot Spectral Imaging Architecture for Compact and Robust Target Detection and Spectral Reconstruction.” IEEE Research and Applications of Photonics in Defense Conference (RAPID), 2019.
  • Blair S, Garcia M, Konopka C, Dobrucki L, Gruev V. “A 27-band snapshot hyperspectral imaging system for label-free tumor detection during image-guided surgery.” Label-free Biomedical Imaging and Sensing (LBIS) 2019. Vol. 10890. International Society for Optics and Photonics, 2019.
  • Gruev V, Garcia M, Powell S, Cui N, Davis T., “Bioinspired Sensors for Underwater Geolocalization.” 2018 IEEE Research and Applications of Photonics In Defense Conference (RAPID). IEEE, 2018.
  • Blair S, Garcia M, Cui N, Gruev V. “A 120 dB, asynchronous, time-domain, multispectral imager for near-infrared fluorescence image-guided surgery.” 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2018.
  • Blair, Steven, Missael Garcia, Nan Cui, and Viktor Gruev. “A 120 dB, asynchronous, time-domain, multispectral imager for near-infrared fluorescence image-guided surgery.” In 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1-4. IEEE, 2018.
  • Garcia, T. Davis, K. Kauffman, R. Marinov, and V. Gruev, “A Six-Channel Multispectral Imager for Simultaneous In Vivo Imaging of Multiple Near-Infrared Fluorescent Markers,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), 2018.
  • Garcia, R. Marinov, K. Kauffman, T. Davis and V. Gruev, “Hexachromatic imager for near-infrared fluorescence image-guided surgery,” in SPIE BiOS, 2018.
  • Gruev, M. Garcia, N. Cui, and Q. Li, “Bio-inspired near infrared fluorescence sensors: from the ocean to the operating room,” in SPIE BiOS, 2018.
  • Ivanovich, S. B. Powell, V. Gruev, and R. D. Chamberlain, “Polarization division multiplexing for optical data communications,” in SPIE OPTO, 2018.
  • Garcia, Missael; Zayed, Mohamed; Park, Kyoung-mi; Gruev, Viktor, “A 1600 by 1200, 300 mW, 40 fps multi-spectral imager for near-infrared fluorescence image-guided surgery,” in 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 101-104, 2017.
  • Garcia and V. Gruev, “Optical characterization and polarization calibration for rigid endoscopes,” in SPIE BiOS, pp. 1004008-1004008-7, 2017.
  • Cui, P. Kharel, and V. Gruev, “Augmented reality with Microsoft HoloLens holograms for near infrared fluorescence based image guided surgery,” in SPIE BiOS, pp. 100490I-100490I-6, 2017.
  • Cui, T. York, R. Marinov, S. Mondal, S. Gao, J. Margenthaler, et al., “A 110 × 64 150 mW 28 frames/s integrated visible/near-infrared CMOS image sensor with dual exposure times for image guided surgery,” in 2016 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 101-104, 2016.
  • Gao, M. Garcia, C. Edmiston, T. York, R. Marinov, S. B. Mondal, et al., “A compact bio-inspired visible/NIR imager for image-guided surgery,” in SPIE BiOS, pp. 96960A-96960A-1, 2016.
  • Gruev, “Bio-inspired Polarization Imaging Sensor for Label-Free Applications,” in Conference on Lasers and Electro-Optics, San Jose, California, p. SM1O.2, 2016.
  • Cui, T. York, R. Marinov, S. Mondal, S. Gao, J. Margenthaler, et al., “A 110 by 215, 150 mW 28 frames/s integrated visible/near-infrared CMOS image sensor with dual exposure times for image guided surgery,” in 2016 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 101-104, 2016.
  • Garcia, S. Gao, C. Edmiston, T. York, and V. Gruev, “Live demonstration: A 1300× 800, 700 mW, 30 fps spectral polarization imager,” in IEEE International Symposium on Circuits and Systems, pp. 1911-1911, 2015.
  • Garcia, S. Gao, C. Edmiston, T. York, and V. Gruev, “A 1300× 800, 700 mW, 30 fps spectral polarization imager,” in IEEE International Symposium on Circuits and Systems, pp. 1106-1109, 2015.
  • Gao, S. Mondal, N. Zhu, R. Liang, S. Achilefu, and V. Gruev, “A compact NIR fluorescence imaging system with goggle display for intraoperative guidance,” in IEEE International Symposium on Circuits and Systems, pp. 1622-1625, 2015.
  • Gao, S. Modal, N. Zhu, R. Liang, S. Achilefu, and V. Gruev, “Live demonstration: A compact NIR fluorescence imaging system design with goggle display for intraoperative guidance,” in IEEE International Symposium on Circuits and Systems, pp. 1910-1910, 2015.
  • Gao, S. Mondal, N. Zhu, R. Liang, S. Achilefu, and V. Gruev, “Performance comparison of different compact NIR fluorescent imaging systems with goggle display for intraoperative Iimage-guidance,” in SPIE BiOS, pp. 931304-931304-8, 2015.
  • York, R. Marinov, and V. Gruev, “A 250 frames-per-second 640 by 480 pixel division-of-focal plane polarimeter for the visible spectrum,” in SPIE Sensing Technology+ Applications, pp. 909915-909915-6, 2014.
  • York, V. Gruev, D. Saha, and B. Raman, “A 220× 128 120 mW 60 frames/s current mode polarization imager for in vivo optical neural recording,” in IEEE International Symposium on Circuits and Systems, pp. 1849-1852, 2014.
  • B. Mondal, S. Gao, N. Zhu, Y. Liu, G. P. Sudlow, W. J. Akers, R. Liang, V. Gruev, and S. Achilefu, “Intraoperative imaging and fluorescence image guidance in oncologic surgery using a wearable fluorescence goggle system,” in SPIE BiOS, pp. 89360P-89360P-5, 2014.
  • Gruev, “Bio-Inspired Spectral-Polarization Imaging Sensors for Medical Applications,” in Frontiers in Optics, p. FW2E. 2, 2014.
  • Gilboa, J. P. Cunningham, A. Nehorai, and V. Gruev, “GP-grid image interpolation and denoising for division of focal plane sensors,” in SPIE Sensing Technology+ Applications, pp. 909905-909905-6, 2014.
  • Calabrese, P. Brady, V. Gruev, and M. Cummings, “Dynamic Polarization Signaling in Swordtails Alters Female Mate Preference,” in Integrative and Comparative Biology, pp. E30-E30, 2014.
  • B. Powell and V. Gruev, “Evaluation of calibration methods for visible-spectrum division-of-focal-plane polarimeters,” in SPIE Optical Engineering+ Applications, pp. 887306-887306-6, 2013.
  • Njuguna and V. Gruev, “Velocity saturation current-mode CMOS imaging sensor,” in IEEE International Symposium on Circuits and Systems, pp. 2630-2633, 2013.
  • Gao, R. Njuguna, and V. Gruev, “Fabrication and performance evaluation of pixelated nano-wire grid polarizer,” in SPIE Optical Engineering+ Applications, pp. 88730L-88730L-7, 2013.
  • Abril, B. Acharya, M. Actis, G. Agnetta, J. Aguilar, F. Aharonian, M. Ajello, A. Akhperjanian, M. Alcubierre, and J. Aleksic, “CTA contributions to the 33rd International Cosmic Ray Conference (ICRC2013),” in International Cosmic Ray Conference, 2013.
  • Xu, M. Kulkarni, A. Nehorai, and V. Gruev, “A correlation-based interpolation algorithm for division-of-focal-plane polarization sensors,” in SPIE Defense, Security, and Sensing, pp. 83640L-83640L-8, 2012.
  • Kulkarni and V. Gruev, “A division-of-focal-plane spectral-polarization imaging sensor,” in SPIE Defense, Security, and Sensing, pp. 83640K-83640K-11, 2012.
  • J. Hall, V. Gruev, and R. D. Chamberlain, “Performance of a resistance-to-voltage read circuit for sensing magnetic tunnel junctions,” in IEEE International Midwest Symposium on Circuits and Systems, pp. 639-642, 2012.
  • Gruev and M. Kulkarni, “Spectral-polarization imaging with CMOS-metallic nanowires sensor,” in IEEE Photonics Conference, pp. 230-231, 2012.
  • Gao and V. Gruev, “Gradient based interpolation for division of focal plane polarization imaging sensors,” in IEEE International Symposium on Circuits and Systems, pp. 1855-1858, 2012.
  • York, S. Powell, and V. Gruev, “A Comparison of Polarization Processing Across Different Platforms,” in Proc. of SPIE, pp. 816004-1, 2011.
  • York, S. Powell, and V. Gruev, “A comparison of polarization image processing across different platforms,” in SPIE Optical Engineering+ Applications, pp. 816004-816004-7, 2011.
  • York, R. Perkins, and V. Gruev, “Live demonstration: Material detection via an integrated polarization imager,” in IEEE International Symposium on Circuits and Systems, pp. 1990-1990, 2011.
  • York and V. Gruev, “Calibration method for division of focal plane polarimeters in the optical and near-infrared regime,” in SPIE Defense, Security, and Sensing, pp. 80120H-80120H-7, 2011.
  • York and V. Gruev, “Optical characterization of a polarization imager,” in IEEE International Symposium on Circuits and Systems, pp. 1576-1579, 2011.
  • Perkins and V. Gruev, “Noise modeling of Stokes parameters in division of focal plane polarization imagers,” in IEEE International Symposium on Circuits and Systems, pp. 1828-1831, 2011.
  • J. Hall, V. Gruev, and R. D. Chamberlain, “Noise analysis of a current-mode read circuit for sensing magnetic tunnel junction resistance,” in IEEE International Symposium on Circuits and Systems, pp. 1816-1819, 2011.
  • Gruev and T. York, “High Resolution CCD Polarization Imaging Sensor,” in International Image Sensor Workshop, 2011.
  • Gao and V. Gruev, “Image interpolation methods evaluation for division of focal plane polarimeters,” in SPIE Defense, Security, and Sensing, pp. 80120N-80120N-10, 2011.
  • Njuguna and V. Gruev, “Linear current mode image sensor with focal plane spatial image processing,” in IEEE International Symposium on Circuits and Systems, pp. 4265-4268, 2010.
  • Gruev, R. Perkins, and T. York, “Integrated high resolution division of focal plane image sensor with aluminum nanowire polarization filters,” in SPIE Defense, Security, and Sensing, pp. 76720G-76720G-9, 2010.
  • Gruev, R. Perkins, and T. York, “Material detection with a CCD polarization imager,” in Applied Imagery Pattern Recognition Workshop (AIPR), 2010 IEEE 39th, pp. 1-7, 2010.
  • Gruev and R. Perkins, “A 1 MPixel CCD image sensor with aluminum nanowire polarization filter,” in IEEE International Symposium on Circuits and Systems, pp. 629-632, 2010.
  • Njuguna, M. Hall, and V. Gruev, “Low power CMOS image sensor with programmable spatial filtering,” in IEEE Sensors Conference, pp. 189-192, 2009.
  • -S. Lin, N. Engheta, and V. Gruev, “Seeing the unseen: What can we learn from polarization-sensitive eyes in nature and how can we design better imaging systems?” in 2009 European Microwave Conference (EuMC), pp. 1057-1058, 2009.
  • Gruev, J. Van der Spiegel, and N. Engheta, “Integrated polarization image sensor for cell detection,” in International Image Sensor Workshop, 2009.
  • Gruev, J. Van der Spiegel, and N. Engheta, “Advances in integrated polarization image sensors,” in Life Science Systems and Applications Workshop, 2009. LiSSA 2009. IEEE/NIH, pp. 62-65, 2009.
  • Gruev, J. Van der Spiegel, and N. Engheta, “Nano-wire dual layer polarization filter,” in IEEE International Symposium on Circuits and Systems, pp. 561-564, 2009.
  • Dudek, A. Lopich, and V. Gruev, “A pixel-parallel cellular processor array in a stacked three-layer 3D silicon-on-insulator technology,” in European Conference on Circuit Theory and Design, pp. 193-196, 2009.
  • Yang, V. Gruev, and J. Van der Spiegel, “Current-mode image sensor with 1.5 transistors per pixel and improved dynamic range,” in IEEE International Symposium on Circuits and Systems, pp. 1850-1853, 2008.
  • Gruev, Z. Yang, and J. V. d. Spiegel, “Low power linear current mode imager with 1.5 transistors per pixel,” in IEEE International Symposium on Circuits and Systems, pp. 2142-2145, 2008.
  • Gruev, J. Van der Spiegel, and N. Engheta, “Low power image sensor with polymer polarization filters,” in IEEE International Symposium on Circuits and Systems, 2008.
  • Gruev, J. V. Spiegel, and N. Engheta, “Image sensor with focal plane polarization sensitivity,” in IEEE International Symposium on Circuits and Systems, pp. 1028-1031, 2008.
  • Yang, V. Gruev, and J. der Spiegel, “Low fixed pattern noise current-mode imager using velocity saturated readout transistors,” in IEEE International Symposium on Circuits and Systems, pp. 2842-2845, 2007.
  • Gruev, Z. Yang, J. Van der Spiegel, and R. Etienne-Cummings, “Two transistor current mode active pixel sensor,” in IEEE International Symposium on Circuits and Systems, pp. 2846-2849, 2007.
  • Gruev, A. Ortu, Z. Yang, J. Van der Spiegel, and N. Engheta, “High-Resolution Integrated Image Sensor with Polymer Micropolarization Array,” in Frontiers in Optics, p. FTuS6, 2007.
  • Yang, V. Gruev, and J. Van der Spiegel, “A CMOS linear voltage/current dual-mode imager,” in IEEE International Symposium on Circuits and Systems, p. 4 pp., 2006.
  • Gruev, K. Wu, J. Van der Spiegel, and N. Engheta, “Fabrication of a thin film micro polarization array,” in IEEE International Symposium on Circuits and Systems, pp. 4 pp.-212, 2006.
  • Gruev, K. Wu, J. Van der Spiegel, and N. Engheta, “Realtime extraction of polarimetric information at the focal plane,” in Defense and Security Symposium, pp. 624005-624005-10, 2006.
  • Gruev, J. Van der Spiegel, R. M. Philipp, and R. Etienne-Cummings, “Image sensor with general spatial processing in a 3D integrated circuit technology,” in IEEE International Symposium on Circuits and Systems, pp. 4 pp.-4966, 2006.
  • Gruev, J. Van der Spiegel, and N. Engheta, “Image sensor with focal plane extraction of polarimetric information,” in IEEE International Symposium on Circuits and Systems, pp. 4 pp.-216, 2006.
  • Etienne-Cummings, S. Mehta, R. Philipp, and V. Gruev, “Neuromorphic vision systems for mobile applications,” in IEEE Custom Integrated Circuits Conference, pp. 531-534, 2006.
  • Gruev and R. Etienne-Cummings, “On-chip normal flow computation with aperture problem compensation circuitry,” in SPIE Defense, Security, and Sensing, pp. 282-291, 2005.
  • Gruev, R. Etienne-Cummings, and T. Horiuchi, “Linear current mode imager with low fix pattern noise,” in IEEE International Symposium on Circuits and Systems, pp. IV-860-3 Vol. 4, 2004.
  • Gruev and R. Etienne-Cummings, “A programmable spatiotemporal image processor chip,” in IEEE International Symposium on Circuits and Systems, pp. 325-328, 2000.
  • Etienne-Cummings, V. Gruev, and M. A. Ghani, “VLSI implementation of motion centroid localization for autonomous navigation,” in Advances in Neural Information Processing Systems, pp. 685-691, 1999.

Book Chapter:

  • Suman B. Mondal, Shengkui Gao, Nan Zhu, Rongguang Liang, Viktor Gruev, Samuel Achilefu,” Chapter Five – Real-Time Fluorescence Image-Guided Oncologic Surgery”, Advances in Cancer Research, 124, pp. 171–211, 2014.
  • Etienne-Cummings, R.; Clapp, M.; Gruev, V., “Focal-Plane Analog Image Processing,” in Yadid-Pecht and R. Etienne-Cummings, CMOS Imagers: from Phototransduction to Image Processing, Kluwer Academic Publishers, Spring 2004.

Patents:

  • Choi H, Kim K, Lew B, Gruev V; “Fluorophore-loaded gelatin-based nanoparticle for intraoperative near-infrared imaging,” United States patent application, 2022.
  • Gruev V, Garcia M; “Polarization Imager with High Dynamic Range,” United States patent application US 16/585,711, 2021.
  • Chamberlain R, Ivanovich D, Gruev V; Washington University in St Louis WUSTL, assignee. Polarization division multiplexed (pdm) communication systems and devices and methods of use thereof. United States patent application US 16/773,951, 2021.
  • Achilefu S, Liu Y, Gruev V, Culver JP, Akers W, Bauer A; Washington University in St Louis WUSTL, assignee. Goggle imaging systems and methods. United States patent US 10,230,943. 2019.
  • Garcia and V. Gruev, “Multispectral imaging sensors and systems,” US Patent Application, 2017.
  • Van der Spiegel, V. Gruev, and Z. Yang, “CMOS linear voltage/current dual-mode imager,” US Patent 8,471,189, 2013.
  • Gruev, “Sensor for spectral-polarization imaging,” US Patent App. 13/866,096, 2013.
  • Achilefu, Y. Liu, V. Gruev, J. P. Culver, W. Akers, and A. Bauer, “Goggle imaging systems and methods,” US Patent App. 14/374,002, 2013.
  • Gruev, Z. Yang, and J. Van der Spiegel, “Current/voltage mode image sensor with switchless active pixels,” US Patent 7,924,332, 2011.
  • Gruev, J. Van der Spiegel, and N. Engheta, “Sensor and polarimetric filters for real-time extraction of polarimetric information at the focal plane,” US Patent 7,582,857, 2009.
  • A. Lewis, R. Etienne-Cummings, K. Hsiao, I. M. Ayub, V. Gruev, and C. F. Milne, “Colorstick,” US Patent 7,251,031, 2007.